Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(2, $\mathbf{2}^{\prime}$-Biquinoline- $\kappa^{2} N, N^{\prime}$)dichloropalladium(II), -copper(II) and -zinc(II)

Yasunori Muranishi, ${ }^{\text {a }}$ Yue Wang, ${ }^{\text {b }}$ Mamiko Odoko ${ }^{\text {a }}$ and Nobuo Okabe ${ }^{\text {a }}$

${ }^{\text {a}}$ Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan, and ${ }^{\mathbf{b}}$ Laboratory of Inorganic Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China Correspondence e-mail: okabe@phar.kindai.ac.jp

Received 10 March 2005
Accepted 27 April 2005
Online 20 May 2005
In the three title complexes, namely ($2,2^{\prime}$-biquinoline$\left.\kappa^{2} N, N^{\prime}\right)$ dichloropalladium(II), $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, (I), and the corresponding copper(II), $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, (II), and zinc(II) complexes, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, (III), each metal atom is four-coordinate and bonded by two N atoms of a $2,2^{\prime}$ biquinoline molecule and two Cl atoms. The $\mathrm{Pd}^{\mathrm{II}}$ atom has a distorted cis-square-planar coordination geometry, whereas the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ atoms both have a distorted tetrahedral geometry. The dihedral angles between the $\mathrm{N}-M-\mathrm{N}$ and $\mathrm{Cl}-M-\mathrm{Cl}$ planes are 14.53 (13), 65.42 (15) and 85.19 (9) ${ }^{\circ}$ for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.

Comment

$\mathrm{Pt}^{\mathrm{II}}$ complexes, such as cis-diamminedichloroplatinum(II) (cisplatin), cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ (Rosenberg et al., 1969), cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (carboplatin), cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$, and (trans-R,R-cyclohexane-1,2-diamineoxalato)platinum(II) (oxaliplatin), $\quad\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$ (Wong \& Giadomenico, 1999), are well known as therapeutic anticancer drugs (Jakupec et al., 2003). As a consequence of the similar coordination behaviour of $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}$ complexes have been treated as ideal models for studies of square-planar complexes (Rau \& van Eldik, 1996), such as $\left[\mathrm{PdCl}_{2}(\mathrm{en})\right]$ (en is ethylenediamine) and cis$\left[\mathrm{PdCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$, and much interest has been focused on the creation of new antitumour $\mathrm{Pd}^{\mathrm{II}}$ complexes, such as $\left[\operatorname{Pd}(\text { asme })_{2}\right]$ (asme is an anionic form of the acetone Schiff base of S-methyl dithiocarbazate; Ali et al., 2002) or [$\mathrm{Pd}($ cbdca $)($ bpy $)]$ (bpy is $2,2^{\prime}$-bipyridine and cbdca is $1,1-$ cyclobutanedicarboxylate; Mansuri-Torshizi et al., 2001).

We have previously synthesized mixed-ligand $\mathrm{Pd}^{\mathrm{II}}$ complexes of a cis-square-planar coordination geometry with N and O ligand atoms and have determined their structures, e.g. $[\mathrm{Pd}(\mathrm{bd})(\mathrm{phen})]$ (bd is 1,2 -benzenediolate and phen is $1,10-$ phenanthroline; Okabe et al., 2003), $[\mathrm{Pd}(\mathrm{nad})(\mathrm{bpy})]$ (nad is

2,3-naphthalenediolate and bpy is $2,2^{\prime}$-bipyridine), $[\mathrm{Pd}($ nad $)$ (biq)] (biq is $2,2^{\prime}$-biquinoline; Okabe et al., 2004), or $[\mathrm{Pd}(\mathrm{cbdca})(\mathrm{bpy})]$ and $[\mathrm{Pd}(\mathrm{cbdca})(\mathrm{phen})]$ (Muranishi \& Okabe, 2004). The complex of $\mathrm{Pd}^{\mathrm{II}}$ with the heterocyclic N, N^{\prime} bidentate ligand biq, namely $[\mathrm{Pd}(\mathrm{biq})(\mathrm{en})]\left(\mathrm{ClO}_{4}\right)_{2}$, shows antitumour activity (Cusumano \& Giannetto, 1997).

(I) $M=\mathrm{Pd}$
(II) $M=\mathrm{Cu}$
(III) $M=\mathrm{Zn}$

It is important to clarify whether the transition metals $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\text {II }}$ have a cis-square-planar coordination geometry with the same ligands as the $\mathrm{Pd}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{II}}$ complexes, since $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ are also able to have a square-planar [see, for example, Koman et al. (1998), Fun et al. (2002) and Liu et al. (2002) for $\mathrm{Cu}^{\mathrm{II}}$, and Wu (2004) and Dastidar \& Goldberg (1996) for $\left.\mathrm{Zn}^{\mathrm{II}}\right]$ or tetrahedral coordination geometry [see, for example, Malkov et al. (2001), Małecka et al. (1998) and Dessy \& Fares (1985) for $\mathrm{Cu}^{\mathrm{II}}$, and Zhu et al. (2002) and Halvorsen et al. (1995) for $\left.\mathrm{Zn}^{\mathrm{II}}\right]$. Furthermore, $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ have both many important biological functions as cofactors in enzymes and antimicrobial activity as complexes (Okide et al., 2000; Patel et al., 1999).

In this study, the structures of $\mathrm{Pd}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ complexes with biq and Cl^{-}ligands have been characterized, viz. $\left[\mathrm{PdCl}_{2}(\right.$ biq $\left.)\right]$, (I), $\left[\mathrm{CuCl}_{2}(\right.$ biq $\left.)\right]$, (II), and $\left[\mathrm{ZnCl}_{2}(\right.$ biq) $]$, (III), and these are shown in Figs. 1, 2 and 3, respectively. Selected coordination bond distances and angles are compared in Table 1. A search of the February 2005 release of the Cambridge Structural Database (Allen, 2002) for relevant $M \mathrm{~N}_{2} \mathrm{Cl}_{2}$ complexes (error-free, non-disordered, $R<0.05$) gave 94,100 and 37 hits for $M=\mathrm{Pd}, \mathrm{Cu}$ and Zn , respectively. Analysis with VISTA (Allen 2002) gave the following distance ranges and mean values (\AA), respectively: $\mathrm{Pd}-\mathrm{N} 2.000-2.114$, 2.034; $\mathrm{Pd}-\mathrm{Cl} 2.262-2.331,2.994 ; \mathrm{Cu}-\mathrm{N} 1.948-2.106,2.105$;

Figure 1
A view of the molecule of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
$\mathrm{Cu}-\mathrm{Cl} 2.186-2.498,2.286 ; \mathrm{Zn}-\mathrm{N} 2.009-2.138,2.056 ; \mathrm{Zn}-\mathrm{Cl}$ 2.171-2.290, 2.217. The dimensions in Table 1 are entirely in accord with these known dimensions.

The coordination geometry around the central metal $\mathrm{Pd}^{\mathrm{II}}$ atom of (I) is remarkably different from those in (II) and (III). In (I), the $\mathrm{Pd}^{\mathrm{II}}$ atom has a distorted cis-square-planar coordination geometry, whereas in (II) and (III), the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ atoms have a distorted tetrahedral geometry. The dihedral angles between the $\mathrm{N}-M-\mathrm{N}$ and $\mathrm{Cl}-M-\mathrm{Cl}$ planes are 14.53 (13), 65.42 (15) and 85.19 (9) ${ }^{\circ}$ for (I), (II) and (III), respectively.

In (I), the overall structure is not planar. The $\mathrm{Pd}^{\mathrm{II}}$ and two Cl atoms deviate from the mean plane formed through atoms $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 12 / \mathrm{N} 2$ in the same direction, by 0.810 (4) \AA for Pd1, 1.739 (8) \AA for Cl 1 and 2.128 (7) \AA for Cl2. As a result of this distortion, the five-membered ring ($\mathrm{Pd} / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 12 / \mathrm{N} 2$) forms a half-chair with the $\mathrm{Pd}^{\mathrm{II}}$ atom as the flap. This deviation seems to be caused by intramolecular steric hindrance between biq moieties ($\mathrm{C} 9-\mathrm{H} 9$ and $\mathrm{C} 19-\mathrm{H} 19$) and Cl atoms (Cl 1 and Cl 2), as reflected by the relatively short $\mathrm{Cl} 1 \cdots \mathrm{H} 9$ and $\mathrm{Cl} 2 \cdots \mathrm{H} 19$ separations of 2.70 and $2.68 \AA$, respectively. The two quinoline rings of the biq ligand of (I) are bowed in the same direction, like two wings, with a dihedral angle of 17.81 (8) Å.

Figure 2
A view of the molecule of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with an asterisk $(*)$ are at the symmetry position $\left(1-x, y, \frac{3}{2}-z\right)$.

Figure 3
A view of the molecule of (III), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

In (II) and (III), the deviations of the central metal atoms from the mean plane ($\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 12 / \mathrm{N} 2$) are zero for $\mathrm{Cu}^{\mathrm{II}}$ and 0.267 (7) \AA for $\mathrm{Zn}^{\mathrm{II}}$, as the five-membered rings ($M / \mathrm{N} 1 / \mathrm{C} 2 /$ $\mathrm{C} 12 / \mathrm{N} 2$) form a planar and a slight half-chair form for $M=$ $\mathrm{Cu}^{\mathrm{II}}$ and $M=\mathrm{Zn}^{\mathrm{II}}$, respectively. The $\mathrm{Cl} \cdots \mathrm{H}$ separations are $\mathrm{Cl} 1 \cdots \mathrm{H} 9\left(1-x, y, \frac{3}{2}-z\right) \quad\left[=\mathrm{Cl} 1\left(1-x, y, \frac{3}{2}-z\right) \cdots \mathrm{H} 9\right]=$ $2.77 \AA$ in (II), and $\mathrm{Cl} 1 \cdots \mathrm{H} 19=3.15 \AA$ and $\mathrm{Cl} 2 \cdots \mathrm{H} 9=3.63 \AA$ in (III). The dihedral angles between the quinoline rings in the biq ligand are 1.4 (2) and 10.3 (2) \AA for (II) and (III), respectively. These indicate that the conformation of the biq ligand of (II) is almost planar, while that of (III) is slightly bowed.

Figs. 4, 5 and 6 show the crystal packing of complexes (I), (II) and (III), respectively. The crystal structures of the three complexes are stabilized by $\pi-\pi$ interactions between inver-sion-related biq ligands. In (I) and (III), $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are present (Table 2). In (I), the N1 ring (N1/C2-C10) stacks with the inversion-related N 1 ring, with a centroidcentroid separation of 3.770 (3) \AA [between the centroids of rings $\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 5 / \mathrm{C} 10$ and $\mathrm{C} 5-\mathrm{C} 10(-x,-y,-z)]$. The N 2 ring (N2/C12-C20) also stacks with neighbouring N2 rings, with centroid-centroid separations of 3.653 (3) and 3.689 (3) \AA

Figure 4
The packing of (I), showing the $\pi-\pi$ interactions between inversionrelated ligand molecules and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (dashed lines). [Symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}-z$.]

Figure 5
The packing of (II), showing the $\pi-\pi$ interactions between inversionrelated ligand molecules.

Figure 6
The packing of (III), showing the $\pi-\pi$ interactions between inversionrelated ligand molecules and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (dashed lines). [Symmetry code: (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]
[between the centroids of rings $\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 15 / \mathrm{C} 20$ and $\mathrm{C} 15-$ $\mathrm{C} 20(1-x, 1-y,-z)$, and between the centroids of rings $\mathrm{N} 2 /$ $\mathrm{C} 12-\mathrm{C} 15 / \mathrm{C} 20$ and $\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 15 / \mathrm{C} 20(1-x,-y,-z)$, respectively]. In (II), the N1 ring (N1/C2-C5/C10) stacks with the inversion-related N 1 ring at $(1-x,-y, 1-z)$, with a centroid-centroid separation of 3.769 (3) \AA. In (III), the N1 ring ($\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 10$) stacks with the inversion-related neighbouring N1 ring at $(-x,-y, 1-z)$, with a centroid-centroid separation of 3.519 (3) A between the C5-C10 rings. The N2 ring ($\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 20$) stacks with the inversion-related neighbouring N 2 ring at $(1-x, 1-y, 1-z)$, with a centroidcentroid separation of 3.539 (3) A between inversion-related $\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 15 / \mathrm{C} 20$ rings.

Experimental

Orange plate-shaped crystals of (I) were obtained by slow evaporation of a dimethylformamide (DMF) solution of a mixture of biq and PdCl_{2} (molar ratio 1:1) at room temperature. Red plate-shaped crystals of (II) were obtained by slow evaporation of a DMF solution of a mixture of biq and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (molar ratio 1:1) at room temperature. Colourless plate-shaped crystals of (III) were obtained by slow evaporation of a DMF solution of a mixture of biq and ZnCl_{2} (molar ratio 1:1) at room temperature.

Compound (I)

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=433.62$
Monoclinic, $P 2_{1} / c$
$a=13.017(4) \AA$
$b=7.726(4) \AA$
$c=15.972(3) \AA$
$\beta=95.675(19)^{\circ} \AA^{\circ} \AA^{3}$
$V=1598.4(10) \AA^{3}$
$Z=4$

$D_{x}=1.802 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14.5-15.0^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, orange
$0.30 \times 0.20 \times 0.05 \mathrm{~mm}$

Data collection
Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.606, T_{\text {max }}=0.928$
3825 measured reflections
3669 independent reflections
2724 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.076$
$S=1.03$
3669 reflections
208 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=390.75$
Monoclinic, $C 2 / c$
$a=19.430(3) \AA$
$b=8.528$ (2) \AA
$c=11.884$ (3) \AA
$\beta=125.991(10)^{\circ}$
$V=1593.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.629 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.715, T_{\text {max }}=0.843$
1877 measured reflections
1825 independent reflections
1032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$

$$
R_{\mathrm{int}}=0.043
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 10$
$l=-20 \rightarrow 20$
3 standard reflections every 150 reflections

$$
\text { intensity decay: } 0.2 \%
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.034 P)^{2}\right. \\
& \quad+0.2227 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=11.0-14.5^{\circ}$
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, red
$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 25$
$k=0 \rightarrow 11$
$l=-15 \rightarrow 12$
3 standard reflections every 150 reflections intensity decay: none

Table 1
Selected bond distances (\AA) and angles (${ }^{\circ}$) for compounds (I), (II) and (III).
$M=\mathrm{Pd}$ in (I), Cu in (II) and Zn in (III).

	(I)	(II)	(III)
$M-\mathrm{N} 1$	$2.067(3)$	$1.997(3)$	$2.070(3)$
$M-\mathrm{N} 2$	$2.032(2)$	$2.2175(13)$	$2.058(3)$
$M-\mathrm{Cl} 1$	$2.2819(10)$		$2.2044(14)$
$M-\mathrm{Cl} 2$	$2.2878(13)$		
	$79.24(10)$	$82.24(18)$	$80.49(14)$
$\mathrm{N}-M-\mathrm{N}$	$86.74(3)$	$102.09(8)$	$118.53(5)$
$\mathrm{Cl}-M-\mathrm{Cl}$			

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$) for compounds (I) and (III).

	$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
(I)	$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.93	2.82	$3.705(3)$	161
	$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl2} 2^{\mathrm{i}}$	0.93	2.78	$3.705(4)$	176
(III)	$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.93	2.80	$3.466(5)$	130

[^0]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.131$
$S=0.99$
1825 reflections
105 parameters

Compound (III)

Crystal data

[$\mathrm{ZnCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$]
$M_{r}=392.59$
Monoclinic, $P 2_{1} / n$
$a=7.986$ (2) \AA 。
$b=12.257$ (6) \AA
$c=16.8390(16) \AA$
$\beta=102.464(13)^{\circ}$
$V=1609.4(9) \AA^{3}$
$Z=4$
$D_{x}=1.620 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.547, T_{\text {max }}=0.911$
3943 measured reflections
3686 independent reflections
1835 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.122$
$S=0.96$
3686 reflections
208 parameters

All H atoms were located in the difference Fourier maps and were then treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku, 2000); structure solution: SIR97 (Altomare et al., 1999); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); publication software: TEXSAN .

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0586 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.70$ e \AA^{-3}
$\Delta \rho_{\min }=-0.71 \mathrm{e} \AA^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=11.6-14.7^{\circ}$
$\mu=1.86 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, colourless $0.50 \times 0.20 \times 0.05 \mathrm{~mm}$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 15$
$l=-21 \rightarrow 21$
3 standard reflections every 150 reflections intensity decay: 1.2%

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0437 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.41 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{gathered}
$$

H-atom parameters constrained

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1828). Services for accessing these data are described at the back of the journal.

References

Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. \& Keat, T. B. (2002). J. Inorg. Biochem. 92, 141-148.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Cusumano, M. \& Giannetto, A. (1997). J. Inorg. Biochem. 65, 137-144.
Dastidar, P. \& Goldberg, I. (1996). Acta Cryst. C52, 1976-1980.
Dessy, G. \& Fares, V. (1985). J. Chem. Soc. Dalton Trans. pp. 1285-1288.
Fun, H.-K., Hao, Q., Wu, J., Yang, X., Lu, L., Wang, X., Chantrapromma, S., Razak, I. A. \& Usman, A. (2002). Acta Cryst. C58, m87-m88.
Halvorsen, K., Crosby, G. A. \& Wacholtz, W. F. (1995). Inorg. Chim. Acta, 228, 81-88.
Jakupec, M. A., Galanski, M. \& Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1-54.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koman, M., Melík, M. \& Glowiak, T. (1998). Acta Cryst. C54, 1604-1605.
Liu, X., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2002). Acta Cryst. C58, m10-m11.
Małecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. \& Strawiak, M. (1998). Acta Cryst. C54, 1770-1773.

Malkov, A. V., Baxendale, I. R., Bella, M., Langer, V., Fawcett, J., Russell, D. R., Mansfield, D. J., Valko, M. \& Kocovsky, P. (2001). Organometallics, 20, 673-690.
Mansuri-Torshizi, H., Ghadimy, S. \& Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517-1520.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Muranishi, Y. \& Okabe, N. (2004). Acta Cryst. C60, m47-m50.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okabe, N., Hagihara, K., Odoko, M. \& Muranishi, Y. (2004). Acta Cryst. C60, m150-m152.
Okabe, N., Muranishi, Y. \& Aziyama, T. (2003). Acta Cryst. E59, m936-m938.
Okide, G. B., Adikuwu, M. \& Esimone, C. O. (2000). Biol. Pharm. Bull. 23, 257-258.
Patel, A. K., Patel, V. M., Patel, R. A., Sharma, S., Vora, J. J. \& Joshi, J. D. (1999). Synth. React. Inorg. Met. Org. Chem. 29, 193-204.

Rau, T. \& van Eldik, R. (1996). Met. Ions Biol. Syst. 32, 339-378.
Rosenberg, B., VanCamp, L., Trosco, J. E. \& Mansour, V. H. (1969). Nature, 222, 385-386.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wong, E. \& Giadomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.
Wu, C.-B. (2004). Acta Cryst. E60, m1580-m1581.
Zhu, M., Lu, L., Jin, X. \& Yang, P. (2002). Acta Cryst. C58, m158-m159.

[^0]: Symmetry codes: (i) $x, \frac{1}{2}-y,-\frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

